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Abstract.  

Ammonia (NH3) emissions have been on continuous rise due to extensive fertilizer usage in agriculture and increasing 

production of manure and livestock. However, the current NH3 emission inventories exhibit large uncertainties at all the 

spatiotemporal scales. We provide atmospheric inversion estimates of the global NH3 emissions over 2019-2022 at 1.27°×2.5° 20 

horizontal and daily (at 10-day scale) resolution. We use IASI-ANNI-NH3-v4 satellite observations, simulations of NH3 

concentrations with chemistry-transport model LMDZ-INCA, and finite difference mass-balance approach for inversions of 

global NH3 emissions. We take advantage of the averaging kernels provided in IASI-ANNI-NH3-v4 dataset, by applying them 

consistently to LMDZ-INCA NH3 simulations for comparison to the observations and then to invert emissions. The average 

global anthropogenic NH3 emissions over 2019-2022 is estimated as ~98 (95-101) Tg yr-1, which is ~63% (~57%-68%) higher 25 

than the prior CEDS inventory’s anthropogenic NH3 emissions and significantly higher than two other global inventories: 

CAMS’s anthropogenic NH3 emissions (by a factor of ~1.9) and CAMEO’s agricultural and natural soil NH3 emissions (by 

~1.4 times). The global and regional budgets are mostly within the range of other inversion estimates. The analysis provides 

confidence in their seasonal variability and continental to regional scale budgets. Our analysis shows rise in NH3 emissions by 

~4% to ~33% during COVID-19 lockdowns in 2020 over different regions compared to the same-period emissions in 2019. 30 

However, this rise is probably due to a decrease in atmospheric NH3 sinks due to decline in NOx and SO2 emissions during 

the lockdowns. 

1 Introduction 

Ammonia (NH3) plays a critical role in both atmospheric chemistry and ecosystem's nitrogen and carbon cycling, with 

significant implications for air quality and human health, climate change, and agriculture. Ammonia in the Earth’s atmosphere 35 

originates from both natural and anthropogenic sources, with the latter dominating emissions from the former. The agricultural 

sector is the largest source of NH3 emissions contributing to more than 81% of the total global NH3 emissions (Van Damme 

et al., 2021; Wyer et al., 2022) and other anthropogenic sources of NH3 mainly stem from domestic, vehicular, waste water 

treatment, and industrial activities (Behera et al., 2013a; Sutton et al., 2013).  Global future NH3 emissions in 2100 are projected 

to increase by 30% to 50% compared to present-day levels, depending on the different Shared Socio-economic Pathways 40 

scenarios (Beaudor et al., 2024). Precise information on the NH3 sources and quantitative attribution of emissions to these 

sources and atmospheric NH3 concentration observations is essential in evaluating the impacts of NH3 on ecosystems, climate, 

air quality, and human health, and formulating effective mitigation measures (Zhu et al., 2015). Timely estimates of global 
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anthropogenic NH3 emissions are needed to formulate effective control strategies to reduce such emissions activities (Behera 

et al., 2013).  45 

Bottom-up NH3 emission inventories provide data on NH3 source emissions (Beaudor et al., 2023; Bouwman et al., 1997; Vira 

et al., 2020), enabling their integration into atmospheric chemistry-transport, climate models to simulate atmospheric ammonia 

concentrations, and assessing impacts of NH3 emissions. However, significant uncertainties are inherent in bottom-up NH3 

emission inventories across spatiotemporal scales (Behera et al., 2013a; Luo et al., 2022; Sutton et al., 2013), stemming from 

the constraints of limited NH3 emission activity data and emission factors, high uncertainty of agriculture statistics, and a lack 50 

of recent information (Chen et al., 2021; Crippa et al., 2018; Xu et al., 2019). In situ measurements are essential for accurately 

developing NH3 emission inventories and for inversion of NH3 emissions, as well as for evaluating these emissions. However, 

the scarcity of in-situ NH3 measurements worldwide contributed to significant uncertainties in NH3 emissions and in our 

understanding of NH3 sources and their distributions (Zhu et al., 2015). Advancements in satellite measurements of columnar 

NH3 abundance in the atmosphere in the past decade, provide high spatiotemporal resolution column concentration data, and 55 

inversion methods are progressively enhancing our ability to derive NH3 emissions. For the atmospheric inverse modeling of 

the NH3 emissions, satellite observations offer valuable data density and coverage, thus mitigating some of the limitations of 

the use of in-situ NH3 measurements, enabling a more comprehensive assessment of NH3 emissions. The recent NH3 emission 

estimates based on satellite observations exhibit significant differences at both regional and global scales when compared to 

those reported by the bottom-up inventories (Cao et al., 2020; Chen et al., 2021; Van Damme et al., 2018; Luo et al., 2022; 60 

Evangeliou et al., 2021; Dammers et al., 2022). However, the satellite data also have some limitations, often lacking clear 

signals from the emissions outside the strongly polluted regions, bearing potential errors due to interference from other 

atmospheric constituents and to the complexity of their validation and calibration, and being sensitive to cloud cover and, in 

particular, providing an incomplete coverage in certain regions in presence of clouds.  

Currently, satellite NH3 observations are available from instruments such as: the Atmospheric Infrared Sounder (AIRS) on the 65 

NASA EOS Aqua satellite (Warner et al., 2016), the Aura Tropospheric Emission Spectrometer (TES) onboard EOS Aura 

satellite (Beer et al., 2008), the three of the Infrared Atmospheric Sounding Interferometer (IASI) series of instruments on  the 

MetOp (Meteorological Operational satellite programme) satellites (Clarisse et al., 2009; Van Damme et al., 2021), the 

Thermal and Near-infrared Spectrometer for Observation-Fourier Transform Spectrometer (TANSO-FTS) onboard the 

Greenhouse Gases Observing Satellite (GOSAT) (Someya et al., 2020), and three Cross-Track Infrared Sounder (CrIS) 70 

instruments onboard the Suomi National Polar-orbiting Partnership (Suomi-NPP) satellites (Shephard et al., 2020). These 

datasets vary in their data record lengths, spatial coverage, and retrieval approaches. However, most of the satellite data 

constrained NH3 emission estimates are based on NH3 observations derived from the IASI and CrIS measurements which have 

similar instrumental characteristics but different retrieval approaches. The IASI NH3 product is a widely used dataset as it 

provides continuous, long-term sampling commencing from 2007, with twice daily coverage across the globe. Except for its 75 

first version, subsequent versions of the IASI NH3 data products are based on the Artificial Neural Network for IASI (ANNI) 

approach for retrieval of NH3 total columns (Van Damme et al., 2017, 2021; Whitburn et al., 2016). However, the absence of 

the vertical averaging kernel (AK) in the IASI ANNI NH3 previous products hindered their utility for comprehensive 

comparisons to atmospheric chemistry-transport model and its suitability for assimilation in atmospheric inversion processes 

for NH3 emission estimations. The AK is proportional to the measurement vertical sensitivity profile and also describes the 80 

vertical structure of the impact of a priori information on the retrieval of NH3 columns. When comparing a chemistry transport 

model against the satellite column retrievals, e.g., in satellite data assimilation processes, the application of the averaging 

kernel should remove the influence of errors resulting from the a priori (or an assumed) atmospheric NH3 vertical profile used 

in the retrievals (Eskes and Boersma, 2003). Using synthetic satellite column observations of another short-lived species NO2, 

Cooper et al. (2020) examined the impact of differences between the modelled and a priori atmospheric vertical NO2 profiles 85 
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on inversion of NOx emission estimates and found that discrepancies led to up to 30% increase in root mean square errors for 

realistic conditions over polluted regions, with inverted emission errors rising as the difference between simulated and a priori 

profile increases. The application of averaging kernel enables the model-retrieval comparison to be independent of the a priori 

profile (Cooper et al., 2020; Douros et al., 2023). Recently, Clarisse et al. (2023) presented a new version 4 of ANNI retrieval 

framework including, for the first time, vertical AK in the IASI NH3 data product. In this study, we use this new version 4 of 90 

IASI ANNI NH3 dataset for comparison to the global chemistry-transport model simulations and for the atmospheric inversion 

of the global NH3 emissions.   

In recent years, numerous studies used satellite observations, mostly IASI and CrIS, to estimate NH3 emissions over specific 

regions (Cao et al., 2020, 2022; Chen et al., 2021; Ding et al., 2024; Fortems-Cheiney et al., 2020; Tichý et al., 2023) or across 

the globe (Dammers et al., 2022; Evangeliou et al., 2021; Luo et al., 2022). Some recent regional scale inversion studies over 95 

the USA (Cao et al., 2020; Chen et al., 2021), China (Jin et al., 2023; Momeni et al., 2023), UK (Marais et al., 2021), and 

Europe (Cao et al., 2022; Ding et al., 2024; Van Der Graaf et al., 2022) show approximately 20%-100% differences between 

the inversion-based and the bottom-up NH3 emissions. The NH3 inversion problem raises challenges and requires a high spatial 

resolution of the emissions since the NH3 emissions are highly localized due to short lifetime of a few hours to a day of 

ammonia in the atmosphere. The impact of the atmospheric chemistry challenges the linearization underlying the traditional 100 

inversion approaches or the use of relatively simple models of the atmospheric chemistry and transport. The conventional 

variational or Kalman filter approaches, which are among the most sophisticated ones, have been used for regional scale 

inversions (Cao et al., 2020, 2022; Ding et al., 2024; Jin et al., 2023). However, covering the globe at a suitable spatial 

resolution represents an inversion problem whose dimension makes the application of such approaches very demanding in 

terms of computational cost. That is probably why, compared to regional studies, global inversions of NH3 emissions based 105 

on satellite observations are relatively scarce (Van Damme et al., 2018; Dammers et al., 2022; Evangeliou et al., 2021; Luo et 

al., 2022). Studies such as Van Damme et al. (2018) and Dammers et al. (2019), covered emissions worldwide, but focusing 

on the detection and estimation of NH3 large point sources or hotspot areas. Using high-resolution maps of atmospheric 

ammonia from IASI, Van Damme et al. (2018) detected 248 NH3 hotspot locations and large source regions across the globe 

and reported that the satellite data constrained NH3 emissions for the source regions vary within a factor of three from the 110 

corresponding estimates extracted from the EDGAR emission inventory. However, the emissions from these detected large 

NH3 point sources or source regions only account for a small fraction of the overall global NH3 emissions budget (Dammers 

et al., 2019). For instance, the cumulative NH3 emissions from the 249 point sources identified by Dammers et al. (2019) 

contributed to merely 5% of the total global NH3 emissions in the Hemispheric Transport Atmospheric Pollution version 2 

(HTAPv2) inventory.  115 

Only a very few global scale inversion studies provided more comprehensive timeseries of full NH3 emission maps using 

computationally intensive inversion frameworks. Recently, Dammers et al. (2022) derived global NH3 emission maps at a high 

spatial resolution (0.2°×0.2°) based on a multi-source gaussian plume method using CrIS observations, and discarding any 

chemistry or aerosols mechanism associated with the short-lived species NH3 in the multi-source Gaussian plume method. 

They showed that satellite-based total NH3 emissions over the globe are ~1.8 times higher than those reported in previously 120 

identified anthropogenic NH3 source locations in CAMS-GLOB-ANT v4.2 global NH3 emission inventory, and the total 

estimates rise to ~4 times greater when newly detected anthropogenic and natural sources are taken into account. However, 

this approach also introduces uncertainties in the estimates due to the assumption of a globally constant atmospheric lifetime 

for NH3 which is a limiting factor on the basis that chemical loss and deposition are highly variable processes that can change 

the lifetime drastically (Van Damme et al., 2018), and uncertainties in plume-spread, wind speed, and wind direction when 125 

fitting a multi-source Gaussian plume model to the observations.  
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In two recent studies of global inversion of NH3 emissions using previous versions of IASI ANNI NH3 data products, 

Evangeliou et al. (2021) and Luo et al. (2022) estimated long-term monthly global NH3 emissions over a decade period starting 

from 2008 and reported their estimates to be higher than those in the bottom-up inventories. However, significance differences 

were observed between these two NH3 emission estimates. In both studies, inversions rely on the NH3 lifetime diagnosed 130 

differently from the simulations of different global chemistry-transport models (CTM), and the modelled NH3 total columns. 

Evangeliou et al. (2021) applied a basic mass-balance inversion approach to estimate monthly NH3 emissions in each grid cells 

as a ratio of the observed total NH3 column from IASI and the lifetime of NH3 computed from a CTM simulation. Using a 

previous version of IASI NH3 observations, Luo et al. (2022) modified the basic mass-balance approach used in Evangeliou 

et al. (2021) by updating the prior NH3 emissions with an additive correction term. This correction is proportional to the 135 

difference between the observed and modelled NH3 columns and inversely proportional to the NH3 lifetime estimated by 

accounting for the deposition fluxes of the whole NHx (NH3 + NH4
+) family instead of only using the NH3 losses. However, 

estimating lifetime of NH3 in the atmosphere is more complex due to the impact of transport mechanisms, loss of atmospheric 

NH3 by the formation of ammonium sulfate or ammonium nitrate particles (Cao et al., 2020), and nonlinearities in NH3-related 

chemistry affecting deposition and concentration. Changes in NH3 concentrations due to emission affect its lifetime through 140 

its interaction with the other trace chemical species like SO2, NOx, HCl, HONO (Behera et al., 2013b) and the basic mass-

balance approaches in Evangeliou et al. (2021) and Luo et al. (2022) do not consider the impact of NH3 emission changes in 

their estimation of NH3 lifetime in atmospheric inversions, which may affect the accuracy of emission estimates.  

Variations of the mass-balance inversion methodology, such as, the finite difference mass-balance (FDMB) approach (Cooper 

et al., 2017; Lamsal et al., 2011), have been proposed for atmospheric inversion of emissions of short-lived species, which 145 

aims to reduce errors in basic mass-balance methods due to nonlinear sensitivity associated between a species emissions and 

ambient concentrations. The FDMB inversion approach is computationally efficient for the global scale inversions at coarse 

resolutions and it has been widely used for estimating anthropogenic surface emissions of short-lived species like NOx and 

SO2 at global and regional scales (Cooper et al., 2017; Lamsal et al., 2011). It derives the fluxes by scaling a prior emission 

estimates, usually derived from bottom-up inventories. This scaling is derived from the computation of the local sensitivity of 150 

concentrations to local emission changes from simulations with a CTM, and from the relative differences between observations 

and the modelled columns. Only a few studies have investigated the FDMB approach for NH3 emission inversion at regional 

scales: Momeni et al. (2023) and Li et al. (2019). They applied iterative FDMB approach to constrain the NH3 emissions of 

East Asia with CrIS and North America with IASI satellite observations. In this study, we investigate the use of the FDMB 

approach at the global scale to derive maps of the NH3 emissions at a relatively high temporal resolution worldwide. While 155 

earlier global-scale inversion studies by Luo et al. (2022) and Evangeliou et al. (2021) derived NH3 emission estimates at the 

one-month scale, we aim to provide daily estimates at 10-day scale (deriving 10-day running average). The FDMB inversion 

approach involves a chemistry transport model for simulations of NH3 concentrations. We use a global chemistry-aerosols 

transport model LMDZ-INCA (Hauglustaine et al., 2004, 2014) for global NH3 concentration simulations. Our LMDZ-INCA 

model configuration has a relatively high spatial resolution of 1.27°×2.5° (latitude × longitude) horizontally, and 79 vertical 160 

levels. The absence of the averaging kernel in previous versions of IASI ANNI NH3 data products used in the previous 

inversion studies prevented utilization of this information to integrate the modelled NH3 profile consistently with the IASI 

NH3 retrievals. This limitation may have impacted the final NH3 emission estimates. In this study, we take advantage of the 

availability of AKs in version 4 of IASI NH3 product for suitable assimilation of such data into a global inversion framework 

relying on a CTM. The application of AK in our global atmospheric inversion of NH3 emissions with the new version 4 of the 165 

IASI NH3 retrievals is one of the main features in this study. 

Here, we estimate global daily (as a 10-day running average) anthropogenic NH3 emissions over the land at 1.27°×2.5° 

horizontal resolution across a period of four years from 2019 to 2022 using the new version 4 of IASI ANNI NH3 data product 
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and the FDMB inversion approach (Cooper et al., 2017; Lamsal et al., 2011). We first compare the LMDZ-INCA model global 

NH3 simulations against the IASI NH3 observations to assess our model’s performance and its suitability for global inversions 170 

of NH3 emissions. In both model-satellite comparisons and inversions, we take advantage of averaging kernels provided in the 

version 4 of IASI ANNI NH3 data product to remove the impact of the vertical NH3 profile assumption of the retrievals. We 

present and discuss the results of our model comparison analysis with the IASI NH3 observations and the global inversions of 

the NH3 emissions at both global and regional scales, considering temporal scales ranging from daily (10-day scale) to monthly, 

seasonal, and annual. Finally, we compare our estimated global NH3 emissions with independent global bottom-up inventories 175 

and other estimated NH3 emissions over the globe and over the selected regions. The structure of the paper is as follows. 

Section 2 describes the new version 4 of the IASI NH3 observations, chemistry-transport model and its setup for global NH3 

concentration simulations, our strategy to compare model NH3 simulations with the satellite observations, and the FDMB 

inversion approach used for global daily NH3 emission estimations. Section 3 presents the results followed by their discussions 

and limitations of the study in section 4. Key conclusions of this study are provided in section 5.     180 

2 Material and methods 

2.1 IASI NH3 version 4 observations 

IASI is an infrared Fourier transform spectrometer onboard the Sun-synchronous polar-orbiting Metop-A/B/C satellites, which 

were respectively launched in 2006, 2012, and 2018 (Clerbaux et al., 2009). IASI has a cross-track scanning swath width of 

~2200 km, with a pixel size of ~12 km in diameter at nadir. Each instrument onboard one of the sun-synchronous satellites 185 

covers almost all locations over the globe twice a day, once at daytime and once at nighttime, with overpasses around 09:30 

and 21:30 local solar time (LST), respectively. The vertical sensitivity of the IASI NH3 measurements, mainly in the boundary 

layer where NH3 is predominantly confined, varies as a function of the thermal contrast between the surface and the 

atmospheric layers (Clarisse et al., 2010; Di Gioacchino et al., 2024). The NH3 total column observations from the IASI 

measurements in the first version were retrieved using the so-called hyperspectral range index (HRI) in an extended spectral 190 

range (800-1200 cm-1) and using look-up-tables (LUT) built from forward radiative transfer model simulations (Van Damme 

et al., 2014). In the subsequent versions, an Artificial Neural Network for IASI (ANNI) retrieval approach was then developed 

and used for retrievals of IASI NH3 total columns (Van Damme et al., 2017, 2021; Whitburn et al., 2016). The ANNI NH3 

retrieval approach uses an assumed Gaussian-shaped vertical profile of NH3 volume mixing ratio (the “prior” profile), which 

is modelled as a function of altitude above the ground level, the peak concentration altitude, and the width of the profile of 195 

significant NH3 concentrations. The peak altitude over land is set at the ground surface with a width equal to the boundary 

layer height (Clarisse et al., 2023), as the NH3 emission is generally higher near the surface and NH3-related chemistry and 

dispersion cause concentration to decrease with altitude. Whereas, over the ocean, it is set to 1.4 km with a width of 0.9 km 

(Clarisse et al., 2023). In this study, we use daily NH3 total columns from a recently released version 4 (ANNI-NH3-v4) of the 

IASI ANNI retrievals of NH3 (Clarisse et al., 2023). The most important feature of this new ANNI-NH3-v4 data product is the 200 

introduction of the column averaging kernel (AK). The vertical AK is essential for comparison of chemistry-transport model 

simulations against the satellite NH3 retrievals, which can be used to remove the effect of the prior vertical NH3 profiles used 

in the retrievals of the IASI NH3 total columns in the model-satellite comparison. Note that the NH3 distribution from IASI-

ANNI-v4 is very similar to the ones with previous version 3, although values are about 15-20% larger due to the improved 

setup of HRI (Clarisse et al., 2023). Furthermore, the ANNI-NH3-v4 data product provides a more accurate characterization 205 

of the measurement uncertainty, along with several other changes, resulting in the improved temporal consistency of the IASI 

NH3 dataset spanning from 2007 to 2023 (Clarisse et al., 2023).  

We use daily IASI-NH3-v4 NH3 global observations over land from the Metop-B satellite from 2019 to 2022. We select the 

NH3 observations from the morning overpass (around 09:30 local solar time) only because of the better precision of morning 

observations as IASI is more sensitive at this time of day to the atmospheric boundary layer, where the signature of the surface 210 
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emissions is the higher, owing to more favorable thermal conditions. We use high-quality IASI NH3 observations only with 

the cloud coverage lower than and equal to 10% (Clarisse et al., 2023). We applied pre- and post-retrieval filters which 

accompany the dataset. This application removes respectively the observations corresponding to erroneous L1 processing of 

the spectra or excess cloud coverage, and observations corresponding to measurements with limited or no sensitivity to the 

measured quantity and retrievals satisfying certain threshold conditions (Clarisse et al., 2023). 215 

2.2 LMDZ-INCA global chemistry-transport model and simulations 

We use the global climate-aerosol-chemistry transport model LMDZ-INCA to simulate the global NH3 concentrations, along 

with a state-of-the art gas phase tropospheric chemistry scheme as well as aerosols including sulfate, nitrate, black carbon 

(BC), particulate organic matter (POM), dust and sea-salt. LMDZ-INCA is a coupled model based on an atmospheric general 

circulation model (GCM) LMDZ V6 (Laboratoire de Météorologie Dynamique) (Boucher et al., 2020; Hourdin et al., 2020), 220 

a chemistry and aerosols model INCA V6 (INteraction with Chemistry and Aerosol) (Hauglustaine et al., 2004, 2014), and a 

global land surface dynamical vegetation model ORCHIDEE (ORganizing Carbon and Hydrology In Dynamic Ecosystems) 

(Krinner et al., 2005). The model uses a monotonic finite-volume second order parameterization to calculate large-scale 

advection of water vapor, liquid and solid water, and tracers (Boucher et al., 2020). The model uses the “New Physics” (NP) 

version of the physical parameterizations, which includes a turbulent scheme based on the prognostic equation for the turbulent 225 

kinetic energy (Yamada, 1983), the “Thermal Plume Model” for the convective boundary layer (Rio and Hourdin, 2008), a 

parameterization for cold pools and wakes resulting from convective rainfall evaporation (Grandpeix and Lafore, 2010), and 

Emanuel’s deep convection parameterization scheme (Emanuel, 1991). LMDZ-INCA interactively accounts for the emissions, 

transport (resolved and subgrid scales), deposition (both dry and wet) of chemical species and aerosol, and incorporates a full 

chemical scheme for the NH3 cycle and nitrate particle formation (Hauglustaine et al., 2014).  230 

LMDZ-INCA model configuration used in this study has a horizontal resolution of 1.27° in latitude × 2.5° in longitude and 

with 79 hybrid σ-pressure levels within a terrain following vertical coordinate stretches up to 80 km. We conducted LMDZ-

INCA spin-up simulations from 2010 to 2018 and then reference simulations for a period of four years from 2019 to 2022, 

which we use for the model comparison with the IASI NH3 observations and for the global NH3 emission inversions. The 

simulations were driven by nudging the GCM winds with a 3.6 h relaxation time to the 6-hourly ECMWF Reanalysis v5 235 

(ERA5) data, regridded onto the LMDZ-INCA model grid. In LMDZ-INCA simulations, we used monthly global 

anthropogenic emission of the chemical species and gases, including NH3, from the open-source Community Emissions Data 

System (CEDS) global bottom-up gridded inventories (McDuffie et al., 2020) with an initial horizontal resolution of 0.5°×0.5° 

and interpolated onto the model horizontal grid. The CEDS global emission inventories provides emissions of NH3, NOx, SO2, 

NMVOCs, CO, OC, and BC from eleven anthropogenic sectors, including agriculture, energy, on-road, non-road 240 

transportation, residential, commercial, waste solvents, international shipping, and others (McDuffie et al., 2020). We also use 

CEDS emissions of NO and NH3 from agricultural soils with both synthetic and manure fertilizers. Since CEDS anthropogenic 

emissions are available only up to 2019, the CEDS emission fluxes for the post-2019 years were developed based on the 

combination of the CEDS emissions in 2019 with the carbon emission growth rate from 2019 to the target year. The data on 

emissions growth rate are derived from the Carbon Monitor dataset (https://carbonmonitor.org/) and calculated by source 245 

sector, by month, and by country. This approach to extrapolate emission fluxes based on CO2 data has been commonly applied 

to various species, particularly those associated with the fossil fuel emissions. The led to noticeable variations in emissions of 

species like SO2 and NOx, which have been simultaneously used in the LMDZ-INCA simulations with full chemical scheme 

for sulfate and nitrate particles formation. However, as extrapolation calculations are conducted for each source sector 

separately and NH3 emissions mostly come from agricultural activities, which do not emit CO2 directly, applying this approach 250 

to extrapolate NH3 emissions for the post-2019 years resulted in almost invariant NH3 emissions after 2019. While this 

approach may seem simplistic for NH3 fluxes, it is used in this study to construct the spatial distribution of prior emissions, as 
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we expect satellite data to drive year-to-year variations in the final inversion results. We use fire emissions from the Global 

Fire Emissions Database (GFED4) (Van Der Werf et al., 2017), and biogenic volatile organic compound (VOC) emissions 

calculated from the ORCHIDEE vegetation model (Messina et al., 2016). Emission fluxes from anthropogenic and natural 255 

sources are prescribed to the model as monthly forcing files for different species. We sample the simulated NH3 concentration 

at an hourly frequency over a four years period from 2019 to 2022. We use these hourly LMDZ-INCA model simulated NH3 

dataset for our analysis with IASI NH3 observations from the morning overpass.   

2.3 Model and satellite comparison approach 

The retrievals of NH3 total columns, Ω௦, where “obs” stands for “observed” IASI NH3 total columns in the IASI ANNI-260 

NH3-v4 data product, are implicitly dependent on an assumed (prior) Gaussian-shaped vertical profiles of the NH3 volume 

mixing ratio above the land and sea surfaces (Clarisse et al., 2023). As a result, the comparison between satellite-retrieved and 

model-simulated column abundances is influenced by the shape of the vertical profile of NH3 mixing ratios assumed in the 

retrievals. The total column averaging kernel (AK), as provided in the ANNI-NH3-v4 data product, characterizes the altitude-

dependent sensitivity of the retrieved atmospheric column to changes in true profile (Eskes and Boersma, 2003). The 265 

importance of the AK in correctly comparing model simulations with the satellite observations has long been established 

f(Cooper et al., 2020; Douros et al., 2023 for NOx; Koukouli et al., 2018 for SO2). There are several possible approaches of 

comparing model simulations with the satellite observations enabling the model-retrieval comparison to be independent of 

assumption on the profiles in the retrievals (Cooper et al., 2020; Douros et al., 2023). Here, we convolved the simulated LMDZ-

INCA NH3 profiles with the IASI NH3 total column averaging kernels. The convolved LMDZ-INCA model simulation of the 270 

NH3 columns, Ωௗ, where “mod” stands for “modelled” LMDZ-INCA NH3 total column, is obtained by weighting the vertical 

integration of the model NH3 sub-columns (𝑥) with the averaging kernel (AKl) (Clarisse et al., 2023; Eskes and Boersma, 

2003):  

Ωௗ  ൌ  ∑ 𝐴𝐾 𝑥       (1) 

where the summation over l is over the 14 vertical levels of IASI NH3 retrievals (on which an assumed NH3 vertical profile 275 

and AKs of retrievals are defined). Here, 𝑥 are obtained by interpolating LMDZ-INCA original NH3 mole fraction vertical 

profiles (at 79 levels) onto the levels corresponding to IASI ANNI-NH3-v4 retrievals (14 levels). The interpolation is 

performed in a manner that conserves the NH3 total column amount. The application of the averaging kernel to the simulated 

LMDZ-INCA NH3 profile ensures the elimination of an assumed NH3 profile error contribution to model-satellite comparison 

(Boersma et al., 2004; Eskes and Boersma, 2003), and that the simulated column is integrated in a way that reflects the retrieval 280 

sensitivity.  

In order to illustrate the impact of the averaging kernel on modelled NH3 total columns, Figure 1 shows LMDZ-INCA 

simulated NH3 mole fraction vertical profiles over a model grid cell in India on three clear-sky days (February 24, March 30, 

October 28) in 2019, and the modelled NH3 sub-columns with and without the application of the averaging kernel 

corresponding to one of the IASI pixel in that model grid cell, obtained from the modelled NH3 mole fraction profile 285 

interpolated on the vertical levels of IASI ANNNI-NH3-v4 retrievals. The subfigures in Figure 1 show that the LMDZ-INCA 

NH3 local vertical profiles mostly decrease with the altitude and are almost similar the Gaussian-shaped NH3 vertical profile 

centered at the land surface used as a prior in the IASI ANNI-NH3-v4 retrievals. However, the model simulated vertical NH3 

profiles for some days (e.g., Figure 1(b)) deviate from such a general smoothed NH3 vertical profile shape assumed in the IASI 

NH3 retrievals and show secondary peak(s) at some higher altitude. Although the short-lived species like NH3 largely resides 290 

within the atmospheric boundary layer and the long-term averaged NH3 vertical distribution in the boundary layer or in the 

lower troposphere could be assumed as smoothly decreasing with the altitudes with maximum at the land surface, high-

temporal-scale NH3 vertical profiles corresponding to the IASI overpass time can be a little more complex than this averaged 

smoothed profile, as observed in both model simulations (Figure 1(b)) and aircraft- and surface-based in-situ measurements 
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(Cady-Pereira et al., 2024; Guo et al., 2021; Pu et al., 2020). This suggests a potential need to refine the assumed NH3 vertical 295 

profile for more accurate satellite NH3 retrievals, though the necessity for this refinement may depend on specific locations 

and meteorological conditions. Across all these days, the application of the averaging kernel results in higher LMDZ-INCA 

NH3 total column values compared to the ones without applying the AKs. The averaging kernel from ANNI-NH3-v4 product, 

often exhibits magnitudes exceeding unity at altitudes corresponding to the LMDZ-INCA NH3 sub-columns peak altitudes. 

This results in larger modelled NH3 total column values when using the averaging kernel.   300 

 

Figure 1: An example illustrating the convolution of LMDZ-INCA NH3 profiles with the IASI ANNI-NH3-v4 averaging 
kernel (AK) to calculate the convolved LMDZ-INCA NH3 total column. The LMDZ-INCA original NH3 mole fraction vertical 
profile (in ppb) at 79 model levels (represented by the orange dashed line on the secondary x-axis on top) and the averaging 
kernel from individual IASI NH3 pixels (represented by the blue dashed line on the primary x-axis on bottom) within a model 305 
grid cell centered at (25.5, 87.6) in India on three dates: (a) 24 February 2019, (b) 30 March 2019, and (c) 28 October 2019, 
and the corresponding NH3 sub-columns (in molecules cm-2) (secondary x-axis on top) from the NH3 vertical profiles simulated 
by LMDZ-INCA in this grid-cell interpolated on the vertical levels of assumed NH3 profile in IASI retrievals (shown in red), 
and the convolved LMDZ-INCA sub-column profiles with the averaging kernel (displayed in green). The values of the LMDZ-
INCA NH3 total column (𝛀𝒎𝒐𝒅) with and without using the AK (in molecules cm-2) are also presented on the respective sub-310 
plots for each day.  

At a given hourly output of the model simulations with the IASI observations from morning overpass, we derive a 

corresponding LMDZ-INCA NH3 profile for each individual IASI NH3 pixel within a model grid cell that contains the center 

of this pixel, and derive the convolved LMDZ-INCA NH3 total column by applying the corresponding AK. Since IASI 

resolution is much finer than that of LMDZ-INCA, this process yields several convolved modeled NH3 total columns for a 315 

single model grid cell. We then average these resulting observed (Ω௦) and corresponding AK-convolved modelled NH3 total 

columns (Ωௗ) at the model spatial resolution (1.27° × 2.5°) for a proper comparison at the coarsest resolution between the 

two products. We exclude the grids of the averaged NH3 total columns from the analysis if there are fewer than four high-

quality IASI pixels within a model spatial grid or if the grid-cell average of observations is negative due to some negative IASI 

NH3 total column retrievals.  320 

2.4 Inversion of the global NH3 emission from IASI observations 

We use the finite difference mass-balance (FDMB) inversion approach (Cooper et al., 2017; Lamsal et al., 2011) for the global 

inversion of NH3 emissions using NH3 total columns from LMDZ-INCA model simulations and IASI NH3 observations. The 

inversion approach assumes that the short lifetime of NH3 of a few hours to a day in the atmosphere, limits its horizontal 
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transport on coarse grids, and implicitly conducts local analysis, deriving local surface emissions (in a given model horizontal 325 

grid cell) based on local observations (corresponding the same model horizontal grid cell), even though relying on full 4D (3D 

in space, 1D in time) simulations with LMDZ-INCA. The FDMB inversion approach relies on the estimation of the local 

sensitivities (β) of the simulations of NH3 total columns to change in the local NH3 emission, addressing non-linear chemistry 

affects from the model simulations. It derives NH3 emission estimates at each grid cell by scaling a prior NH3 emission (here 

based on the anthropogenic emissions from the CEDS inventory), considering the local sensitivity of NH3 simulations to 330 

changes in emission and the relative difference between the observed and modelled NH3 total columns. Our objective is a daily 

estimate of 10-day running mean global NH3 emissions over land. However, with only satellite NH3 observations, it is 

challenging to distinguish between anthropogenic and natural sources. Therefore, our approach focuses solely on grid-cells 

and days where and when the prior NH3 emission inventory indicates that the emissions are dominated by the anthropogenic 

sources, and where and when we have retained grid-cell averages of IASI NH3 observations (see section 2.3). We use the 335 

combined anthropogenic NH3 emissions from CEDS and fire emissions from the GFED4 inventories, used in the LMDZ-

INCA simulations, as a priori emissions (Ea) in the inversions. We select the grid cells with dominating anthropogenic NH3 

emissions by identifying those where a ratio of anthropogenic NH3 emissions to total NH3 emissions (including anthropogenic, 

biogenic and fire NH3 emissions) is greater than 0.6. This selection of dominant anthropogenic emissions slightly alters their 

spatial distribution over the years from 2019 onward due to variations in fire emissions across different years. We compute a 340 

10-day running average at each grid cell of the modelled and observed NH3 total columns and of the a priori emissions to 

smooth out the daily fluctuations in observed NH3 total columns and to increase the sample size and spatial coverage of the 

daily flux estimates. Following (Cooper et al., (2017) and; Lamsal et al., (2011), for a given day and over each model horizontal 

grid-cell, the satellite-constrained NH3 emission estimates (EIASI) using the observed IASI NH3 total columns (Ωobs), and the 

modelled LMDZ-INCA columns convolved with the averaging kernels (Ωmod) corresponding to a priori NH3 emission (Ea) 345 

used in the model simulations are calculated as: 

  𝐸୍ୗ୍ ൌ  𝐸 ቀ1   𝛽
ஐ್ೞି ஐ

ஐ
ቁ   (2) 

where a unitless scaling factor β accounts for the local sensitivity of the modelled NH3 total columns (∆Ωmod/Ωmod) to 

perturbations of the a priori NH3 emissions (∆Ea/Ea), and is defined as: 

 𝛽 ൌ  
ாೌ ೌ⁄

ஐ ஐ⁄
     (3) 350 

We perform two LMDZ-INCA model simulations for each year: one using the prior emissions, with the anthropogenic NH3 

emissions from the CEDS bottom-up inventory for the year 2019 which updated for subsequent years based on the trend of 

previous years NH3 emissions (see section 2.2), and another with a 40% reduction in the CEDS anthropogenic NH3 emissions 

to derive β. We applied some filters on β, on the observed and/or the modelled NH3 total columns, and/or on the bottom-up 

emissions to select the grids corresponding to the dominating anthropogenic emissions, and to avoid negative or extreme 355 

unrealistic estimates of the NH3 emissions from the inversions. We select grids over land only for (i) 0 ≤ β ≤ 10, (ii) 

𝛽
ஐ್ೞି ஐ

ஐ
  െ1, (iii) Ω୫୭ୢ and Ω୭ୠୱ > 1 × 1015 molecules cm-2. Figure S1 in supporting information shows an example 

of the distribution of monthly mean values of β for July 2019. The values of β are less than 1.5 over most of the regions over 

the globe on land regions.   

3 Results  360 

We present the results from LMDZ-INCA model comparisons with satellite NH3 observations and inversions of NH3 emissions 

at both global and regional scales over land areas. For regional analysis, we select six major NH3 source regions: India, China, 

Africa, Europe, North America, and South America (Figure S2). We present and discuss our results across various temporal 

scales, ranging from daily to monthly, seasonal, and annual.  
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3.1 Model and satellite comparison of NH3 total columns  365 

We start by comparing the LMDZ-INCA model simulated NH3 total columns driven by the prior emissions and convolved 

with the averaging kernel against the IASI NH3 observations, with first a worldwide overview, and then some focuses on 

regions over the land. In addition to assessing global and regional mean comparisons between the modeled and the observed 

IASI NH3 columns, we also calculate the Pearson’s correlation coefficient (r) and Root Mean Square Error (RMSE) between 

the annual or monthly mean simulated and observed values at the model grid level, as part of our comparative analysis (shown 370 

on Figures 2&3 for 2019 and Figures S3 for all years from 2019 to 2022).  

 

Figure 2: The spatial distributions of the annual mean NH3 total columns (in molecules cm-2) for the year 2019 (a) from the 
IASI ANNI-NH3-v4 observations (𝛀𝒐𝒃𝒔ሻ, (b) from LMDZ-INCA model simulated columns after applying the averaging kernel 
(𝛀𝒎𝒐𝒅), and (c) the difference (𝛀𝒎𝒐𝒅 െ  𝛀𝒐𝒃𝒔) between them. The last column (d) show the scatter density plots between these 375 
annual means observed IASI and the corresponding LMDZ-INCA model NH3 columns across all model grid-cells worldwide 
over the land. In the scatter plots, the solid black line represents the one-to-one line, while the dashed red line represents the 
regression line.       

Figures 2 compares the annual mean modelled LMDZ-INCA NH3 columns (Ωௗ) with the observed IASI NH3 column 

retrievals (Ω௦) re-gridded on the LMDZ-INCA model grid (1.27° × 2.5°) worldwide over land for the year 2019 (Figure S3 380 

for all four years from 2019 to 2022). It shows that the annual mean worldwide spatial distributions of the modelled NH3 

columns are approximately similar to that of the IASI NH3 retrievals and there is a good spatial correlation (r = 0.72) between 

them. However, the IASI NH3 observations indicate higher NH3 abundance compared to the LMDZ-INCA simulations across 

most of the regions worldwide, except over the south Asia and Eastern Siberia regions (Figure 1). We observe an overall 

underestimation of the global annual mean LMDZ-INCA NH3 columns Ωௗ (mean: 0.28×1016 molecules cm-2) compared 385 

with the observed IASI retrievals Ω௦ (mean: 0.53×1016 molecules cm-2). The RMSE between the annual mean gridded Ωௗ 

and Ω௦worldwide is 0.49×1016 molecules cm-2.   

Emphasizing on the regional analysis, in Figure 3, we found that the modelled NH3 total columns are lower than the IASI NH3 

observations over most of the selected regions, except over the Indian region (also south East Asia, not shown but see Figure 

2), and also over a region in Eastern Siberia, where the model shows an overestimation of the observations (not shown but see 390 

Figures 2). The annual regional mean of Ωௗ over China, Africa, Europe, South America, and North America regions are 

respectively ~10%, ~51%, ~58%, 60%, and 72% smaller compared to Ω௦. However, over the Indian region, the annual 

regional mean of Ωௗ is ~41% larger than Ω௦. The monthly regional mean timeseries of the IASI NH3 observations in 

Figure 3 show that the NH3 columnar abundance over most of the regions are higher during spring and/or summer months 

compared to the winter. These elevated NH3 columns observed during spring and/or summer months compared to winter 395 

months can be attributed to increased agricultural activities, particularly the prominent use of N-fertilizers in crops during 

warmer seasons. High NH3 concentrations are also influenced by temperature, as warmer temperatures can enhance NH3 

volatilization from soils and agricultural surfaces (Sutton et al., 2013). This synergistic effect of agricultural practices and 

temperature contributes to the seasonal variation in NH3 emissions, with higher concentrations during spring and/or summer 

months. 400 
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Figure 3: The monthly regional mean timeseries of the observed IASI NH3 total columns (𝛀𝒐𝒃𝒔), the corresponding LMDZ-
INCA modelled columns (𝛀𝒎𝒐𝒅) (primary y-axis), and monthly anthropogenic (CEDS) and fire (GFED4) NH3 emissions (secondary 
y-axis) from bottom-up inventories used in the model simulations for the year 2019 for different selected regions (a) India, (b) 
China, (c) Africa, (d) Europe, (e) South America, and (f) North America (first column). The second column in each subfigure 405 
show the scatter density plots between the monthly mean gridded observed IASI and the corresponding modelled NH3 total 
columns. In the scatter plot, the solid black lines represent the one-to-one line, while the dashed red lines represent the 
regression line.   

The monthly mean modelled NH3 columns in Figure 3 mostly follow the seasonal variation of the IASI observations over the 

South American and African regions, and over the European region up to some extent. However, for other remaining regions, 410 

especially over the Indian, Chinese, and the Middle East (not shown) regions, the seasonality of the modelled NH3 columns 

largely deviates from the observations and we see a large scatter between the monthly mean gridded modelled and observed 

NH3 columns (Figures 3 (a) and (b)). Over the Indian region, the model shows two main peaks with the highest peak in May 

following a secondary smaller peak in September; whereas, the IASI observations show the highest peak in July and a smaller 

one in April (Figure 3(a1)). The high NH3 loading from the IASI observations over the Indian region from June to August with 415 

a maximum peak in July and a secondary much smaller peak in April (Figure 3(a1)), is consistent with the cropping cycle 

(Kuttippurath et al., 2020), high usage of the N-fertilizers, and high temperature during these monsoon and summer months in 

the Indo-Gangetic Plain (IGP) region spanning the banks of the Indus and Ganges Rivers and their tributaries (Beale et al., 

2022). However, as mentioned before, the variation and two distinct peaks in the modelled NH3 columns is similar to the 

variation and peaks in the anthropogenic NH3 emissions used in the model simulations (Figure 3). Similarly, over the Chinese 420 

region, the observed NH3 columns show highest peak in July which is not captured by the simulations that shows the maximum 

peak in May, followed by a small peak in September. In these regions, because of differences of seasonal variations between 

the modelled and observed NH3 columns, we see weak spatial correlations between the monthly mean observed and modelled 

gridded NH3 columns (Figure 3) that are smaller than in other regions like Africa, South America, and Europe, where the 

seasonality in both modeled and observed NH3 total columns is roughly similar. 425 

Figure 3 also shows the seasonal cycles in the regional anthropogenic (CEDS) and fire (GFED4) emissions from the global 

emission inventories used in the model simulations. Over some regions like South America, North America, and Africa, fire 

NH3 emission has visible contribution to this seasonal variation in total emissions; whereas, over India, China, and European 

regions, this attribution is very small (Figure 3). It shows that the seasonality in the modelled NH3 total columns mostly varies 
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with the seasonality in the combined anthropogenic and fire NH3 emissions over these regions (Figure 3). Therefore, the 430 

seasonality differences between the model and observations over some regions are mostly due to different seasonality 

embedded in the prior NH3 emissions used for the model simulations (Figure 3). The model comparison analysis for other 

years from 2020 to 2022 shows a similar behavior of the modelled and observed NH3 columns. Notably, the seasonality of 

anthropogenic NH3 emissions in the CEDS inventory is mainly derived according to the European agricultural practices based 

on the ECLIPSE v5 model, which leads to NH3 emission peaks mostly in May and September corresponding to the fertilizers 435 

application before planting and after harvesting the crops (Beale et al., 2022). However, this seasonal variation of the NH3 

emissions in CEDS may not be accurately reflecting the diverse agricultural practices in other regions like India, China and 

the Middle East (Figure 3) (Beale et al., 2022; Chen et al., 2023a; Kuttippurath et al., 2020). This is clearly evident from large 

difference in the seasonal variations between the IASI NH3 observations and LMDZ-INCA model over these regions, as model 

is driven by the CEDS anthropogenic NH3 emissions (Figure 3). This dependency on European seasonality in CEDS inventory 440 

NH3 emissions for other major agricultural NH3 emission regions with diverse agricultural practices, like India and China, 

require for region-specific data to improve the accuracy of emission inventories. For some regions like the South America, 

Africa, and North America the observed IASI NH3 total columns show high values during specific periods, which mainly 

attributes to heightened NH3 loading resulting from biomass burning from wildfires in these regions. The underestimation 

and/or distinct seasonality of the modelled NH3 columns compared to the observed IASI NH3 retrievals over different regions 445 

indicate biases and/or differential seasonality in the prior NH3 emissions from the inventories over these regions.  

3.2 IASI-constrained NH3 emissions  

Satellite data gaps, and some filters applied on observations and different variables in the FDMB inversion approach to focus 

on model grid cells dominated by anthropogenic NH3 emissions (section 2.4), result in numerous grids or days where NH3 

emissions could not be derived directly from the IASI NH3 observations. Therefore, the derivation of national or regional 450 

budgets of anthropogenic emissions at daily (10-day scale) to monthly and annual scale from the satellite observations requires 

a proper gap-filling of grid cell or days for which the inversion protocol does not yield emission estimates. To fill these gaps 

in IASI-constrained NH3 emissions, we use a rather conservative approach utilizing IASI-constrained NH3 emissions and the 

corresponding a priori CEDS anthropogenic NH3 emissions used in the inversions. The gap-filling is performed over some 

specific regions. In order to gap-fill the daily-unconstrained NH3 emissions, we compute a daily scaling factor as a ratio 455 

between the IASI-constrained and the corresponding CEDS anthropogenic NH3 emissions integrated over a specific region. 

The missing emissions in that selected region are gap-filled by multiplying in each corresponding grid-cell the CEDS NH3 

emissions with these scaling factors. For a given day, when the spatial coverage of the IASI-constrained anthropogenic NH3 

emissions is less than 60% in a specific region due to a poor satellite coverage and due to other data filtering to apply the 

FDMB inversion approach, we apply some constraints on the scaling factor to prevent spurious gap-filled emissions. If the 460 

IASI-constrained emissions coverage is less than 10%, we directly use the prior CEDS NH3 emissions. For coverage between 

10% and 40%, we cap the scaling factor at 1.25, and for coverage between 40% and 60%, we cap it at 1.5. For the gap-filling, 

we use nine continental regions (illustrated in Figure S4) from the 10 regions defined by Ge et al. (2022) based on 58 IPCC 

reference regions representing consistent regional climate features described in Iturbide et al. (2020). Ge et al. (2022) used 

these nine regions to access global and regional budgets and fluxes of atmospheric reactive N and S gases and aerosols. The 465 

fraction of the IASI-constrained and the gap-filled NH3 emissions per season across six regions for each year from 2019 to 

2022 in Figure S5 shows that the gap filling of emissions over most of the regions is mostly higher during winter season and 

minimum during spring. However, in some regions such as India and Africa, the percentage of the gap-filled emissions to the 

total seasonal emissions is higher in summer compared to other seasons due to relatively smaller numbers of satellite 

observations, caused by higher cloud coverage during the monsoon season. The overall percentage of the gap-filled NH3 470 

emissions to the total emissions over worldwide is maximum (up to ~26%) during winter and minimum (up to ~10%) during 
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spring season and it ranges from ~15%-18% during summer and autumn (Figure S5). However, since the attribution of the 

NH3 emissions in winter season to the total annual emissions is smaller compared to other seasons, the total gap-filled 

emissions in winter are still lower than in other seasons (Figure S6). 

In the subsequent subsections, we present and discuss these gap-filled global daily (10-day scale) NH3 emission estimates 475 

integrated on different temporal and spatial scales. Over the four-year period of our emission estimates, we present global and 

regional annual budgets, including the mean emissions over this period, with the range defining minimum and maximum 

annual emissions, as well as the variation of the regional estimates at different temporal scales ranging from daily (10-day 

scale) to monthly, seasonal, and annual.     

3.2.1 Global annual NH3 emissions  480 

The spatial distribution of the IASI-constrained annual NH3 emissions averaged over the four-year period (2019-2022) in 

Figure 4 (Figure S5 for each year from 2019 to 2022) clearly reveals the main hotspots of the high anthropogenic NH3 

emissions over the globe on land areas. Figure 4 shows that this four-years averaged annual IASI-constrained NH3 emissions 

has a similar spatial distribution to the prior CEDS anthropogenic NH3 emissions. However, over most of the major NH3 

emitting regions over the globe and over land areas, the IASI-constrained NH3 emissions are higher compared to the prior 485 

CEDS emissions (Figure 4). It shows that the south and the east Asian regions are the highest anthropogenic NH3 emitting 

regions over the globe.      

 

Figure 4: Spatial distribution of the four-year (2019-2022) averaged annual NH3 emissions, showing (a) the prior CEDS 
anthropogenic NH3 emissions, and (b) IASI-constrained estimated NH3 emissions from our global atmospheric inversions.  490 

Figure 5 presents the global annual IASI-constrained NH3 emissions and its comparison with the prior CEDS anthropogenic 

NH3 emissions for all the four years from 2019 to 2022. The slight differences in the prior CEDS emissions over the four years 

is mainly due to the different coverages of the dominating anthropogenic NH3 emissions based on the CEDS anthropogenic 

and GFED’s fire emissions (see section 2.4) and also some differences in the soil NH3 emissions over the years. For each year, 

the IASI-constrained NH3 emissions are higher than the prior CEDS emissions. The average of global annual NH3 emission 495 

estimates over the four years period is ~98 (95.0-101.4) Tg yr-1, which is ~63% (57%-68%) higher than the prior CEDS 

anthropogenic NH3 emissions. The global annual NH3 emission estimates show an increasing trend from the year 2019 to 2021 

(Figure 5). However, NH3 emission estimates for 2022 (~97 Tg yr-1) are lower than those for 2020 and 2021; however, still 

higher than those for 2019 (~95 Tg yr-1).    
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 500 

Figure 5: Global annual NH3 emissions for each year from 2019 to 2022, showing the prior CEDS anthropogenic NH3 
emissions (orange), and IASI-constrained (red) emissions.  

3.2.2 Regional NH3 emissions and seasonal variation 

Figure 6 illustrates the daily (at 10-day scale) variation of estimated NH3 emissions for four years from 2019 to 2022 over the 

six specific regions, India, China, Africa, Europe, North America, and South America (defined in Figure S2) which have the 505 

major anthropogenic ammonia emissions. In this figure, the prior CEDS NH3 emissions of the year 2019 over the globe and 

over the land areas are almost the same in magnitudes and seasonal variation across the four years and thus, the representation 

is shown only for the year 2019. Figure 7 shows the spatial distributions of the four-year averaged annual IASI-constrained 

NH3 emissions and the prior CEDS emissions over the six regions. The budgets of regional annual estimated and prior NH3 

emissions over the four years period for these selected regions are presented in Figure 8. 510 

The Indian and Chinese regions in the south and east Asia are the major ammonia emitting regions in the world, with a majority 

of emissions originating from large crop-specific agriculture activities, including the use of synthetic fertilizers, manure, and 

emissions from soils and livestock. Over the Indian region, the highest NH3 emission is from the Indo-Gangetic Plain region, 

which is attributed to the intensive agriculture practices (Figure 7(a)). The average annual NH3 emission estimates for the four-

year period over the Indian region is ~15.1 (14.4-15.5) Tg yr-1 which is ~7% (~2%-10%) higher than the prior CEDS 515 

anthropogenic NH3 emissions (~14.1 Tg yr-1). The annual estimates over the Indian region show a slowly decreasing trend 

over the four-year period (Figure 8(a)). Notably, the seasonal variation of the estimated NH3 emissions across all the four years 

is similar to each other; however, it is always different from the prior CEDS NH3 emissions (Figure 6(a)). The seasonal 

variation in NH3 emissions across different regions in the CEDS inventory dataset is rather coarse (Beaudor et al., 2023) and 

mostly based on the European practices of agricultural activities (Beale et al., 2022). The CEDS NH3 emissions show two 520 

peaks in May and September, whereas, the estimates show the main peak in July and August and some small peaks from 

https://doi.org/10.5194/egusphere-2025-162
Preprint. Discussion started: 17 February 2025
c© Author(s) 2025. CC BY 4.0 License.



 

15 
 

January to April for each inversion year. The high NH3 emission estimates over the Indian region in July-August with a peak 

in July is consistent with the cropping cycle (dominatingly rice cultivation followed by corn), high usage of N-fertilizers, and 

high temperature during these monsoon and summer months in the Indo Gangetic Plain region. The high estimates in the 

winter and spring months can be attributed to the usage of N-fertilizers during the winter and spring crop seasons, particularly 525 

from the dominating wheat cultivation. Biomass burning is also a small contributing source of the NH3 emissions in this region 

with the majority of fires resulting from crop-residue and stubble burning in the spring and autumn before replanting. 

Therefore, there should not be a significant problem of attribution between the anthropogenic and biomass burning emissions 

here.  

The majority of IASI-constrained and the prior CEDS anthropogenic NH3 emissions over the Chinese region are confined to 530 

the East China region (Figure 7(b)). The four-year average of inverted annual NH3 emission over the Chinese region is ~23.7 

(22.5-25.3) Tg yr-1 (Figure 8(b)). This averaged IASI-constrained NH3 emission is ~64% (~56%-75%) higher than the prior 

CEDS emissions (~14.5 Tg yr-1) used in the inversions. For this region, we see an increasing trend in the estimated ammonia 

emissions from 2019 to 2021 (Figure 8(b)). The annual NH3 emission estimate for 2022 (23.4 Tg yr-1) is lower than those for 

maximum in 2021 (~25 Tg yr-1), comparable to those in 2020 (~23.6 Tg yr-1); however, it remains higher than those for 2019 535 

(~22.5 Tg yr-1) (Figure 8(b)). A majority of the ammonia emissions in this region originate from the crop-specific agriculture 

activities, more specifically the applications of synthetic fertilizer and livestock manure in different crop cultivations (Xu et 

al., 2018). The daily (at 10-day scale) variation of the NH3 emissions in Figure 6(b) shows a strong seasonality in the estimates 

across all the years over this region. The seasonality in the emission estimates across all the years is different from the prior 

CEDS NH3 emissions used in the inversions. We observe mainly two high peaks in the estimates in spring (March-April) and 540 

in summer’s June-July months, whereas the CEDS emissions show two peaks in May and September. The NH3 emission 

estimates also show a small third peak in October for inversion years from 2020 to 2022, except for 2019. The strong 

seasonality in the emission estimates in this region agrees well with the crop cycle when wheat cultivation dominates in spring 

and rice cultivation in the summer months (Xu et al., 2018)    

As discussed before in section 3.1, seasonality in the CEDS inventory NH3 emissions for most of the regions is mostly based 545 

European agricultural practices, corresponding to the fertilizers application before planting and after harvests (Beale et al., 

2022). This does not accurately capture the NH3 emissions in regions like China, India and the Middle East, where agriculture 

practices differ significantly (Beale et al., 2022; Chen et al., 2023a; Kuttippurath et al., 2020). Whereas, our inversion estimates 

based on the satellite data shows more realistic seasonality of NH3 emissions across different regions, closely aligning with 

their respective crop and agriculture cycles.  550 

South America, Africa, and North America regions are fire-dominated regions, particularly during the dry season when 

wildfires are prevalent (Figure S8) (Chen et al., 2023b). The biomass burning from the wildfires plays a significant role in 

contributing to the total ammonia emissions in these regions. When fire emissions attribution in the prior emissions used for 

inversion is inaccurate, the dominated anthropogenic emission grids are misrepresented. In contrast, IASI observations will 

indicate high emissions over these grid cells due to biomass burning. The recent release of the 5th version of the Global Fire 555 

Emissions Database (GFED5) indicates a 61% increase in global burned area compared to GFED4 (Chen et al., 2023b). This 

increase may result in anthropogenic NH3 grids from the inversions corresponding to biomass burning grids, consequently 

revealing heightened anthropogenic dominated NH3 emission estimates over these regions due to non-local contribution from 

transport from neighboring biomass burning dominating grids. Biomass burning generates NH3 advection at higher altitudes 

which also breaks our assumption of weak lateral transport in FDMB inversion approach, which may attribute to large errors 560 

in the emission estimates over these regions.   
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Figure 6: Daily (at 10-day scale) variation of the total estimated and the prior CEDS anthropogenic NH3 emissions for the 
four years from 2019 to 2022 integrated over each selected region, (a) India, (b) China, (c) Africa, (d) Europe, (e) South 565 
America, and (f) North America.  

For South American and African regions, our inversions respectively provide ~11.4 (~10.1-12.6) Tg yr-1 (Figure 8(e)) and 

~14.5 (~13.8-15.1) Tg yr-1 (Figure 8(c)) of the annual NH3 emissions averaged over the four-year period. These averaged 

annual estimates for these regions exceed the prior CEDS emissions by approximately 2.2 and 2 times, respectively. Our 

estimates show a clear increasing trend in annual NH3 emission over the Africa (Figure 8(c)). However, a decreasing trend of 570 

annual NH3 emissions from 2020 to 2022 is observed over the South American region (Figure 8(e)). For the South American 

region, we observe a high peak in the estimated emissions during September to October months in each year and this peak in 

the year 2020 is much higher than that from other years (Figure 6(e)). In fact, the peak in 2021 is higher than the one from the 

estimates in 2019 and 2022. The seasonality of the estimates over the South American region is similar to the prior CEDS 

anthropogenic NH3 emissions (Figure 6(e)). There was a high increase in number of fires in 2020 compared to other years in 575 

this region (Figure S8 (a)), which can also be observed from an enhanced observed NH3 loading from IASI observations over 

this region in these years (Figure S3). The highest peak in the estimated NH3 emissions in 2020 is mainly because of the 

contribution from these relatively higher number of fire occurrences in this year. For the African region, the prior CEDS shows 
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almost a flat seasonality relative to the estimates with a small peak in May; whereas, the estimates show at least two clear 

peaks in February-March and in July-August (Figure 6(c)). The NH3 emissions over this region remain high during other 580 

seasons also (Figure 6(c)). Although we exclude grids dominated by the biomass burning emissions from the GFED4 bottom-

up inventory in our inversions, mitigating its influence on the inversion estimates is challenging. This is due to the complexity 

arising from the fact that bottom-up NH3 emissions lack the most updated information on fire occurrences, and the transport 

from biomass burning areas can extend to other regions, which is not accounted for in our inversion approach (Chen et al., 

2023b).  585 

 

Figure 7: Spatial distribution of the total annual NH3 emissions averaged over the four years period (2019-2022) across six 
regions (a) India, (b) China, (c) Africa, (d) Europe, (e) North America, and (f) South America, showing bottom-up prior CEDS 
emissions (first column), IASI-constrained emissions (EIASI) using the IASI NH3 observations (𝛀𝒐𝒃𝒔).  

We estimate ~12.4 (11.7-13.5) Tg yr-1 four-year averaged annual NH3 emissions over the North American region which is 590 

approximately 2.3 times higher than the CEDS anthropogenic NH3 emissions (Figure 8(f)). Our inversion estimates show an 

increasing trend of annual NH3 emissions from 2019 to 2021 over this region, but 2022 estimates are smaller than those from 

2020 and 2021 and comparable to the 2019 emissions (Figure 8(f)). The estimates show a strong seasonality with peak 

emissions in April-May across all the years (Figure 6(f)). For the years 2020 to 2022, especially for 2020 and 2021, we 

observed a secondary peak during August and September which is less visible in 2019 emissions. The high secondary peak in 595 

2020 and 2021, may result from an increased biomass burning due to more wildfires in these years compared to 2019. Similar 

to the South American and African regions, in North American region also, the impact of biomass burning from fires from 

some regions may contribute to the higher ammonia emissions (Figure S8(c)). In fact, the highest peak in the estimated 

emissions in 2020 in this region corresponds to an extreme cluster of wildfire events known as the "August Complex Fire" in 

2020. This event originated as 38 separate fires started by lightning strikes on August 16-17, 2020, in the western U.S., leading 600 
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to the first "gigafire" event in modern history in California (Campbell et al., 2022; Makkaroon et al., 2023). Campbell et al. 

(2022) showed that this 2020 "gigafire" contributed up to 83% of the total nitrogen emissions in the western U.S. However, 

based on GFED4 inventory fire emissions, our inversion could not filter out the grids dominated by these wildfire emissions 

during such events in this region. 

Over the European region, hotspot regions with high NH3 emissions are well detected for our inversion estimates (Figure 7(d)). 605 

The four-year averaged of annual NH3 emission over this region is estimated as ~8.2 (8.0-8.5) Tg yr-1 (Figure 8(d)). The 

estimated annual emissions over this region in 2020 are higher than in the other remaining inversion years; however, the 

estimates still remain approximately comparable across these years (Figure 8(d)). Our emission estimates over the European 

region are ~78% higher compared to the prior CEDS anthropogenic NH3 emissions. The estimates show a strong seasonality 

across all the years, with high emissions from March to May with a peak in April (Figure 6(d)). This seasonality in the estimates 610 

differs from the prior CEDS emissions which show a high peak in May and a smaller one in September (Figure 6(d)). The 

strong seasonality in the emission estimates agrees well with the crop cycle over the European region when the main cultivation 

activities dominate in the spring and summer seasons.     

Other than these selected regions, we also briefly analyzed regional estimates over the Middle East region, a comparatively 

smaller ammonia emitting region (Figure S9). A recent study by Osipov et al. (2022) based on ship-borne measurements 615 

around the Arabian Peninsula and modelling showed that NH3 emissions over the Middle East region are significantly 

underestimated, potentially by a factor exceeding 15 from EDGAR inventory emission used in their model simulations. While 

natural sources of ammonia play a negligible role in this region, the vast majority of emissions arise from industrial and 

agricultural activities. Over the Middle East region, our average annual anthropogenic estimate of ~4.5 Tg yr-1 (~4.4-4.5 Tg 

yr-1) is approximately 50% higher than the prior CEDS emissions (~3.0 Tg yr-1). The annual NH3 emissions in these regions 620 

remained almost the same over the four-year period (Figure S9(c)). The estimated NH3 emissions show strong seasonality with 

a high peak in May-April and a second peak in July-August across all the four years, whereas, the prior CEDS anthropogenic 

NH3 emissions show two peaks in May and September (Figure S9(b)).  

4 Discussion 

4.1 Comparison with bottom-up inventories and other NH3 emissions estimates  625 

We compare in this section our IASI-inverted NH3 emission estimates with other global and regional bottom-up inventories, 

as well as with other available NH3 emissions inversion estimates reported in the recent literature. We use two global bottom-

up NH3 emission inventories (i) CAMS-GLOB-ANT v6.2 (developed by combining the CEDSv2 emissions trends and 

temporal profiles from CAMS-GLOB-TEMPO and EDGAR v6 historical monthly NH3 emission data up to 2018) 0.1°×0.1° 

monthly dataset (Granier et al., 2019; Soulie et al., 2023) from 2019 to 2022, and (ii) the process-based agricultural and natural 630 

soil emissions from the Calculation of AMmonia Emissions in ORCHIDEE (CAMEO) model at 1.27°×2.5° horizontal and 

monthly temporal resolutions (Beaudor et al., 2023). CAMEO simulates NH3 sources from the agricultural sector, from 

livestock manure management (including animal housing and manure storage to grazing) to synthetic and organic nitrogen 

application to soil. Since CAMEO emissions are not only limited to cultivated / livestock areas and are dynamically dependent 

on environmental conditions and atmospheric deposition, emissions from natural ecosystems are also exploited in this study. 635 

For these inter-comparisons, we re-gridded the global NH3 emissions from the bottom-up inventories on the grids (1.27°×2.5°) 

of our estimated emissions. We also sub-sampled the monthly emissions from the bottom-up inventories on the common grids 

corresponding to the IASI-constrained monthly NH3 emissions derived from the daily (at 10-day scale) estimates. Note that 

CAMEO additionally includes natural soil NH3 emissions; whereas, CAMS emissions do not include it and provide only 

anthropogenic NH3 emissions.   640 
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Figure 8: The regional annual NH3 emissions spanning from 2019 to 2022 over the six regions over the land areas, derived 
from the IASI-constrained daily global estimates, the prior CEDS inventory anthropogenic NH3 emissions, and two 
independent global bottom-up inventories CAMS (anthropogenic NH3 emissions) and CAMEO (combined agriculture and 
natural soil NH3 emissions). The CAMEO NH3 emissions is for its last available year, 2014 selected on the common grids of 645 
each year’s estimates.    

Global annual anthropogenic NH3 emissions from CAMS bottom-up inventory (~52.4 Tg yr-1), subsampled on the common 

grids where IASI-constrained monthly emissions are available, are lower than the prior CEDS anthropogenic NH3 emissions 

(~60.4 Tg yr-1); whereas, global annual NH3 emission from CAMEO from combined agricultural and natural soil sectors (~71 

Tg yr-1) are higher than those from both CEDS and CAMS. Therefore, we have even larger relative difference between the 650 

estimated and the CAMS emissions than the relative difference between the estimated and CEDS emissions (Figure 8). 

However, this relative difference between the estimated and CAMEO’s combined agriculture and natural soil NH3 emissions 

are smaller compared to the relative difference between the estimated and CEDS. The four-year averaged global annual NH3 

emissions from the inversions are ~1.9 times higher than CAMS anthropogenic NH3 emissions and ~1.4 times higher than 

CAMEO combined agriculture and natural soil NH3 emissions. Figure 8 shows a comparison between the IASI-inverted annual 655 

emissions and corresponding CAMS and CAMEO emissions over six regions (and over the Middle in Figure S9) and across 

four years, revealing consistently higher IASI-constrained emissions compared to these global bottom-up inventories.    
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We also compare our estimates with the recent global NH3 inversion emission estimates by Luo et al. (2022) based on a 

previous version of IASI NH3 observations from 2008 to 2018, with the recent estimates from Dammers et al. (2022) derived 

using the CrIS observations from 2013 to 2020, and with some other regional inversion estimates. Luo et al. (2022) estimated 660 

global annual NH3 emissions at ~78 (70-92) Tg yr-1 averaged over a period from 2008 to 2018, and Dammers et al. (2022) 

over a period from 2013 to 2020 had 216.6±66.2 Tg yr-1 (for all detected source locations) and 74.1±17.7 Tg yr-1 (for inventory 

identified source locations). Our averaged global annual NH3 emissions estimates of ~98 (95-101) Tg yr-1 from 2019 to 2022 

are ~26% higher compared to the average total estimates (~78 Tg yr-1) from Luo et al. (2022). This can partly be explained by 

the fact that the IASI version 4 NH3 column values used in this study are also about 10-20% higher than the earlier version 3 665 

(Clarisse et al., 2023) used by Luo et al. (2022) due to a reduction of the retrieval biases. This also has to be explained by the 

use of a different inversion approach, of a different chemistry transport model, and application of averaging kernels from IASI 

NH3 observations to model simulated NH3 columns in this study. Our estimates align more closely with the upper range (~92 

Tg yr-1) of their emission estimates obtained by setting a 200% perturbation to the modelled atmospheric NH3 lifetime in their 

inversions. It should be noted that Luo et al. (2022) corrected their NH3 emissions over the Indian and East China regions 670 

during 2013 to 2018, which were impacted by the rapid changes in SO2 emissions and concentrations in these regions, 

especially rapidly decrease of SO2 emissions over China. A decrease in SO2 emissions leads to an increase in NH3 

concentrations/columns in the troposphere because lower SO2 levels reduce the formation of ammonium sulfate aerosols, 

leaving more free ammonia in the atmosphere, which increases its concentration in the air (Luo et al., 2022). This correction 

in Luo et al. (2022) leads to a small increase in NH3 emissions over the Indian region. However, a substantial reduction of ~7-675 

8 Tg for the year 2018 is observed over the East China region. Without any correction for SO2 trends, our estimates (for 2019) 

are closer to their estimates for the year 2018. In contrast, our average total global estimate of ~98 (95.0-101.4) Tg yr-1 for the 

period 2019-2022 is ~2.2 times smaller than the 216.6±66.2 Tg yr-1 total from the sum of all detected source estimates from 

Dammers et al. (2022). Additionally, our four-year averaged estimates are ~33% higher when comparing with their estimates 

(74.1±17.7 Tg yr-1) corresponding to the sources in CAMS-GLOB-ANT v4.2 inventory emissions above the detection limit of 680 

their satellite-constrained emissions. 

In order to compare our regional NH3 emissions, derived from the global inversion estimates, with those of Luo et al. (2022), 

we re-gridded their final inversion year (2018) estimates to match the spatial resolution (1.27°×2.5°) of our estimated NH3 

emissions. Subsequently, we integrate both the emission estimates over the identical grids on common selected regions over 

the land and compare their final inversion year’s (2018) NH3 emissions with our nearest first inversion year (2019) estimates. 685 

For comparison with Dammers et al. (2022), their regional estimates for all detected source locations are consistently higher 

than our estimates. Therefore, in the subsequent comparison analysis, we compare our estimates only with their regional 

reported estimates corresponding to the sources with inventory emissions above the detection limit of their satellite-derived 

emissions. This comparison is consistent as our estimates also required information on the prior CEDS NH3 emissions and for 

the missing sources with zero emissions in bottom-up inventory, our inversion will not detect any new emission sources. Over 690 

the Indian region, our annual estimates of 2019 (~15.4 Tg yr-1) are closer to the estimates of 2018 (~13.1 Tg yr-1) from Luo et 

al. (2022), representing a marginal ~13% increase. Our estimates over the China region of 2019 (22.5 Tg yr-1) are much higher 

(~75%) compared to Luo et al. (2022) SO2 trend corrected NH3 emissions (~13 Tg yr-1); however, these are closer to their 

estimates without correction. Recently, Liu et al. (2022) estimated 21.6 Tg NH3 yr-1 (≡ 17.77 Tg N yr-1) annual emissions over 

China for the year 2019 using satellite data and our estimates (22.5 Tg yr-1) for the same year are comparable to these inversion 695 

estimates. Dammers et al. (2022) reported ~35 Tg yr-1 averaged NH3 emissions for the Asia region and our combined four-

year averaged estimate of ~43 Tg yr-1 from India, China, and the Middle East regions is ~24% higher than their estimate. Our 

estimates for Africa (~13.8 Tg yr-1), South America (~10.1 Tg yr-1), and the Middle East (~4.4 Tg yr-1) regions for 2019 agree 

well with Luo et al. (2022) estimates (11.1 Tg yr-1, 10.5 Tg yr-1, and 4.1 Tg yr-1, respectively) for 2018 within ~24%, ~4%, and 

~7%, respectively. For the South American region, our annual estimate of ~10.1 Tg yr-1 for 2019 agrees well with the estimate 700 
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of 9.1 Tg yr-1 from Dammers et al. (2022). Our estimates (11.7 Tg yr-1) for 2019 over the North American region are ~55% 

higher than ~7.5 Tg yr-1 from Luo et al. (2022); however, they are closer to the total estimates of 12.2 Tg yr-1 from Dammers 

et al. (2022). Recently, Sahoo et al. (2024) constructed a high-resolution gridded (0.1° × 0.1°) emission inventory of NH3 

emissions over India for 2022 by including 24 regional major and minor anthropogenic sources. They estimated 10.54 Tg yr-1 

of NH3 emissions in 2022, which are closer to the CAMS emissions, while our inversion estimates of 15.5 Tg yr-1 NH3 705 

emissions for the same year are ~42% higher (Figure 8(b)).  

Over the European region, our annual NH3 estimate (~8 Tg yr-1) for 2019 is ~98% higher compared to ~4.1 Tg yr-1 from Luo 

et al. (2022) for 2018. However, our four-year averaged annual estimates (~8.2 Tg yr-1) are ~26% smaller than ~11.1 Tg yr-1 

from the estimates of Dammers et al. (2022). The European Union (EU) emission inventory report (EEA Report No 4/2023, 

2023) reported comparatively lower NH3 emissions for EU 27-member states as 3.5 Tg yr-1, 3.4 Tg yr-1 and 3.3 Tg yr-1 for 710 

2019, 2020, and 2021, respectively, which are much lower compared to our estimates for these years. Also, some other recent 

top-down inversion studies, such as (Tichý et al., 2023) have obtained a similar order of the magnitude of the emissions (4.3 

Tg yr-1 and 4.0 Tg yr-1 for 2019 and 2020, respectively) using the CrIS satellite observations as from Luo et al. (2022) (4.1 Tg 

yr-1 for 2018) or from (EEA Report No 4/2023, 2023). However, our estimates are comparable to the NH3 emissions derived 

from a recent regional atmospheric inversion over Europe at 0.2°×0.2° horizontal and monthly temporal resolutions over a 715 

three year period from 2020 to 2022, derived within the EU project Sentinel EO-based Emission and Deposition Service 

(SEEDS) (https://www.seedsproject.eu/data/monthly-nh3-emissions) (Ding et al., 2020, 2024). In this regional atmospheric 

inversion, NH3 emissions over Europe were derived by DECSO (Daily Emissions Constrained by Satellite Observations) v6.2 

algorithm, developed to derive emissions of short-lived species based on an extended Kalman Filter approach and using CrIS 

(NOAA-20) observations (Ding et al., 2020, 2024). Our annual NH3 emission estimates integrated over the common European 720 

domain [10°W-30° E, 35°N-55° N], amounting to 9.1 Tg yr-1, 8.7 Tg yr-1, 8.7 Tg yr-1 for three years 2020, 2021, and 2022, 

respectively, are in good agreement (within ~1-12%) with 8.2 Tg yr-1, 8.4 Tg yr-1, and 8.6 Tg yr-1 derived for the same years 

in SEEDS NH3 emission inversions. SEEDS NH3 emission estimates over Europe indicate an increasing trend of ~0.2 Tg yr-1 

over a three-year period from 2020 to 2022. In contrast, our inversion estimates show a peak in 2020, with comparatively 

lower values in the subsequent years (Figure 8(d)).  725 

This comparison analysis show that our inversion estimates of NH3 emissions integrated at global or regional spatial scales are 

within the range of other previous inversion estimates derived based on different satellite observations and different inversion 

approaches. Our estimates, as well as these other inversion estimates, are higher compared to the NH3 emissions from different 

global or regional bottom-up inventories, which tend to support the assumption that there is a general underestimation of the 

emissions in the inventories. The bottom-up inventories do not accurately capture the seasonality of NH3 emissions in relation 730 

to the agricultural and crops activity cycles in some regions like India, China and the Middle East. In contrast, our inversion 

estimates demonstrate a seasonality that is consistent with the crops and agriculture cycles in these regions.   

4.2 Impact of COVID-19 lockdowns on NH3 emissions  

The strict restrictions imposed during the COVID-19 lockdown periods in the year 2020 across different 

regions/countries/cities around the world observed major changes in anthropogenic activities, atmospheric concentrations, and 735 

emissions of different air pollutant species like NOx and SO2. However, atmospheric NH3 concentration and emissions 

received comparatively less attention compared to NOx or SO2 and only a very few studies analyzed the impact of COVID 

lockdowns on ambient NH3 concentrations. Most of the air pollutants like NOx and SO2 show a decline in their atmospheric 

concentrations and emissions during COVID-19 lockdown periods (Zheng et al., 2021). The decline in NOx and SO2 

concentrations in the atmosphere during the COVID-19 lockdowns leads to reduction of formation of ammonium nitrate and 740 

ammonium sulfate aerosols from atmospheric ammonia, and hence a decrease in the atmospheric sink of NH3. Meanwhile, 

agriculture activities remained mostly unchanged during COVID-19 lockdown period. These factors along with changes in 
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meteorology and atmospheric composition may have impacted ammonia levels in the atmosphere. A recent study by 

Kuttippurath et al. (2024) showed that the global atmospheric ammonia concentration increased anomalously almost 

everywhere around the world during COVID-19 lockdown periods in the year 2020 compared to the previous year 2019. Some 745 

other studies at regional or city scale, e.g., Xu et al. (2022) (China), Viatte et al. (2021) (Paris in France), Lovarelli et al. (2021) 

(Lombardy region in Italy), also reported increase of ammonia concentration in the atmosphere during COVID-19 lockdown 

periods in 2020. Recently, Evangeliou et al. (2024) conducted inversion estimates of NH3 emissions based on satellite 

observations during the COVID-19 lockdowns in Europe and shown that the NH3 emissions decreased by ~9.8% in the first 

half of the 2020 compared to 2016-2019. However, overall atmospheric ammonia levels increased due to reduced chemical 750 

removal from lower SO2 and NOx emissions and the persistence of agricultural activity (Evangeliou et al., 2024). In this study, 

we analysed the changes in estimated daily (at 10-day scale) NH3 emissions from our global inversions during COVID-19 

major lockdowns in 2020 compared to the pre-COVID year 2019 over six regions across the world.  

 

Figure 9: The timeseries of estimated daily (at 10-day scale) NH3 emissions and total emissions (bar plots) during the COVID-755 
19 lockdown periods in the year 2020 and pre-COVID year 2019 over different regions across the world. 

From our atmospheric inversions, we observe that the annual NH3 emissions across all the selected six regions in the COVID-

19 lockdowns year 2020 are higher compared to the pre-COVID year 2019 (Figure 8). Lockdown periods varied across 

different regions, countries, and cities. However, following the first lockdown in China in the second last week of January 

2020, the majority of major lockdowns were implemented between March and May during that year. We defined the lockdown 760 
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periods in 2020 using the most consistent common dates that aligned with the major lockdowns in each region. Figure 9 

compares the estimated daily NH3 emissions timeseries and total NH3 emissions during the COVID-19 lockdown periods in 

2020 with the estimated NH3 emissions during the corresponding period in pre-COVID year 2019 across six regions. Daily (at 

10-day scale) variation of the NH3 emission during the lockdown periods in 2020 are mostly higher compared to those in same 

period in 2019 (Figure 9). The total NH3 emissions across these regions in 2020 during the lockdown periods increased by a 765 

minimum ~4% (in China) to a maximum ~33% (in South America) compared to the total emissions in this period in 2019 

(Figure 9). The total NH3 emissions during the lockdown periods in 2020 compared to 2019 across India, Africa, North 

America, and Europe regions increase by ~10%, ~6%, ~9%, and ~17%, respectively.  

The increase in NH3 emissions from our global inversions during the COVID-19 lockdown periods in 2020 across different 

regions, compared to the pre-COVID year 2019, raises uncertainty about whether this rise is due to an increase in NH3 emission 770 

sources or due to the impact of meteorology on NH3 volatilization or due to decrease in the atmospheric sink of NH3 due to 

decline in NOx and SO2 emissions and concentrations during the lockdowns. However, an increase in NH3 emission sources 

during such these short lockdowns period seems unlikely, as agricultural practices, the primary source of NH3 emissions, 

remained largely unchanged during the lockdowns. This suggests that the observed rise may be more attributable to changes 

in atmospheric chemistry or to the impact of meteorology on NH3 volatilization and to the reduction of other species, like SO2 775 

and NOx emissions, during the lockdowns (Evangeliou et al., 2024). The single species inversion system used in this study 

has a limitation and a source of uncertainty to explain this rise in NH3 emissions. These changes require to study the 

atmospheric chemistry of ammonia in response to variations in NOx and SO2 levels in the atmosphere. A combined multi-

species inversion of NOx, SO2, and NH3 emissions would offer valuable insights into the complex chemical interactions among 

these air pollutant species in the atmosphere. 780 

4.3 Limitations of the present study  

There are several uncertainties and limitations associated with our global inversion of the NH3 emissions using IASI NH3 

observations. Although our estimates are mostly consistent and within the range of other recent inversion emissions, our 

inversion approach is subject to several limitations. The inversion approach is directly impacted by the errors associated with 

the observations from the satellite NH3 retrievals, and from model simulations and it does not provide the uncertainty in 785 

emission estimates. Systematic errors in satellite retrievals, particularly notable at higher latitudes and during wintertime, may 

introduce inconsistencies or lead to an overestimation of emissions. Statistical inverse modelling methods (Cao et al., 2020, 

2022) account for retrieval errors, but this account is generally focused on the random local and instant noise on the retrievals, 

and these methods are also highly impacted by systematic errors (Cao et al., 2020, 2022). The FDMB inversion approach 

employs a linear sensitivity function, which may oversimplify the complex chemical interactions between air pollutants, 790 

including NH3, in the atmosphere. Due to the sparseness of daily satellite observations of NH3 total columns, when the number 

of high-quality observations within a grid cell are limited, it amplifies uncertainty in the averaged gridded dataset used in the 

inversions. Consequently, this may lead to an increase in uncertainty in the estimates of daily (at 10-day scale) emissions. As 

we focus on the inversion of dominated anthropogenic NH3 emissions, exclusion of the emissions from other sectors like 

natural sources is a big challenge. This complexity is particularly pronounced in the regions dominated by biomass-burning 795 

NH3 emissions from wildfires. The local mass-balance inversion approach does not incorporate the transport of ammonia from 

the non-local biomass-burning emissions regions to the local anthropogenic grids, which may lead to an overestimation of the 

anthropogenic NH3 emissions in some regions like South America, North America, and Africa.  

Although, the local finite difference mass-balance approach applied for the inversion of short-lived species like NH3 in this 

study, which has a very short atmospheric lifetime of a few hours to a day, is suitable for inversions at a coarse resolution (~2°) 800 

(Cooper et al., 2017). An iterative finite difference mass-balance approach (Li et al., 2019) can be explored in future to provide 

a better accuracy in the estimates of NH3 emissions at a feasible computational cost to overcome this limitation. Over some 
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regions like China and India, the rapid changes in SO2 emissions in the recent years impact the NH3 concentration in the 

atmosphere significantly and thus emissions (Luo et al., 2022). Similarly change in NOx emissions and concentration in the 

atmosphere across different regions alter the formation of ammonium nitrate from ambient ammonia. Therefore, we will 805 

investigate the potential of simultaneously assimilating NH3, SO2, and NOx satellite observations to constrain the NH3 

emissions in future studies.  

5 Conclusions 

In this study, we present satellite-based atmospheric inversion estimates of the global daily (at 10-day scale) NH3 emissions 

for a period of four years from 2019 to 2022 at 1.27°×2.5° horizontal resolution using the new version 4 of the IASI ANNI-810 

NH3-v4 NH3 observations and the LMDZ-INCA model simulations. We take advantage of the averaging kernel provided in 

the IASI ANNI-NH3-v4 data product to evaluate the LMDZ-INCA model suitability for global inversion of the NH3 emissions. 

The LMDZ-INCA model simulated NH3 total columns are underestimated from the IASI NH3 observations over most of the 

selected regions, except over the Indian region, and over a region in Eastern Siberia, where model shows an overall 

overestimation from the observations. The simulated NH3 columns from the LMDZ-INCA model followed the seasonality of 815 

the IASI observations over the South American and North American regions, and to some extent, over the European region. 

However, the seasonal variations over the Indian, Chinese, and African regions are inadequately represented in the model 

simulations compared to the IASI observations.      

We use a simple finite difference mass-balance approach for the inversion of global daily (at 10-day scale) NH3 emissions 

using the LMDZ-INCA and IASI NH3 total NH3 columns which uses a sensitivity parameter of NH3 columns to changes in 820 

the local NH3 emissions to address non-linear chemistry affects from the model simulations. Our inversions provided an 

average of ~98 (95-101) Tg yr-1 global annual NH3 emission over a period of four years from 2019 to 2022. Our IASI-

constrained NH3 emission estimates are ~63% (~57%-68%) higher than the prior CEDS anthropogenic NH3 emissions used in 

the inversions. A comparison of our inversion estimates with the two independent global bottom-up inventories CAMS and 

CAMEO shows that our estimates are ~1.9 times higher than CAMS anthropogenic NH3 emissions and ~1.4 times higher than 825 

CAMEO’s combined agricultural and natural soil NH3 emissions. Our global and regional NH3 emission estimates over India, 

China, Africa, Europe, South America, North America, and the Middle East regions are mostly within the range of other global 

and regional inversion estimates derived based on the IASI or CrIS satellite NH3 observations. Our simple inversion framework 

lacks the ability to attribute contributions from the sectors like the biomass burning on the estimates of the anthropogenic NH3 

emissions. Therefore, the estimated NH3 emissions over some regions like South America and Africa regions may be 830 

overestimated due to dominating biomass burning from wildfires in these regions. Our NH3 emission estimates over the Europe 

are ~78% higher compared to the prior CEDS inventory emissions; however, they are consistent with two recent inversion 

estimates. We observed an increasing trend of the NH3 emission over the China and Africa, and a decreasing trend over the 

Indian region over a four-year period from 2019 to 2022. Our estimates of the NH3 emissions show a strong seasonal variation 

over most of the selected regions which are currently poorly known or almost absent in bottom-up inventories.  835 

We also analyzed impact of restrictions during COVID-19 lockdown periods in 2020 over different regions across the world 

on the estimated daily (at 10-day scale) NH3 emissions in comparison to the pre-COVID year 2019. Our inversion estimates 

show that the total NH3 emissions across China, India, Africa, North America, Europe, and South American regions during 

the lockdown periods in the year 2020 increased by respectively ~4%, ~10%, ~6%, ~9%, ~17%, and ~33% compared to the 

total emissions in the same periods in 2019. However, this increase in NH3 emissions from our global atmospheric inversions 840 

during the COVID-19 lockdowns, compared to the pre-COVID year 2019, raises a question about whether this rise is due to 

an increase in NH3 emission sources or due to the impact of meteorology on NH3 volatilization or due to decrease in the 

atmospheric sink of atmospheric NH3 due to decline in NOx and SO2 emissions and ambient concentrations during the 

lockdown periods. However, our inversion system fails to explain this rise in NH3 emissions. Therefore, a more comprehensive 
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inversion approach, integrating NOx, SO2, and NH3 simultaneously, would provide deeper insights into the complex chemical 845 

interactions between these pollutants in the atmosphere.  

Code and data availability  

All the estimated emission dataset will be available from the ESA World Emission (WOREM) project website 

(https://www.world-emission.com). The IASI-ANNI-NH3 version 4 dataset is available from the Aeris data infrastructure 

https://iasi.aeris-data.fr/nh3/. CAMS anthropogenic emissions CAMS-GLOB-ANT_v5.3 data can be accessed directly from 850 

https://eccad.aeris-data.fr/essd-surf-emis-cams-ant/. The NH3 emission estimates from dataset Luo et al. (2022) for the year 

2018, used for comparison analysis, are available from GitHub: https://github.com/bnulzq/NH3-emission.git. The codes and 

scripts developed for inversions, plotting, and other analysis are accessible upon reasonable request from the corresponding 

author. The version of the LMDZ-INCA model used in this study is available from 

https://forge.ipsl.jussieu.fr/igcmg/svn/modipsl/trunk.  855 
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